Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method

نویسندگان

  • Gul Amin
  • Muhammad Asif
  • Ahmed Zainelabdin
  • Siama Zaman
  • Omer Nur
  • Magnus Willander
  • G. Amin
  • Yanqiu Zhu
چکیده

We investigated the influence of the pH value, precursor concentration (C), growth time and temperature on the morphology of zinc oxide (ZnO) nanostructures. The pH of the starting solution was varied from 1.8 to 12.5. It was found that the final pH reaches an inherent value of 6.6 independently of the initial pH solution. Various ZnO structures of nanotetrapod-like, flower-like, and urchin-like morphology were obtained at alkaline pH (8 to 12.5) whereas for pH solution lower than 8 rod-like nanostructures occurred. Moreover, we observed the erosion of the nanorods for a pH value less than 4.6. By changing the concentrations the density and size were also varied. On going from a high (C > 400 mM) to lower (C < 25 mM) C, the resulted ZnO nanostructures change from a film to nanorods (NRs) and finally nanowires (NWs). It was also found that the length and diameter of ZnO NRs follow a linear relation with time up to 10 hours, above which no further increase was observed. Finally the effect of growth temperature was seen as an influence on the aspect ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controllable Synthesis of Flower-Like ZnO Nanostructure with Hydrothermal Method (RESEARCH NOTE)

Flower-like ZnO nanostructures were synthesized by decomposing Zn(OH)2 in 1,4- butanediol at 105 °C for 36 h. Size of flower-like ZnO nanostructure can be controlled by pH of the aqueous solution. In the preparation of flower-like ZnO nanostructure, zinc nitrate was used as a precursor. The morphology and microstructure of flower-like ZnO nanostructure have been characterized by scanning electr...

متن کامل

Synthesis and Characterization of ZnO Nanostructures Grown via a Novel Atmospheric Pressure Solution Evaporation Method

In this study, a novel method called “atmospheric pressure solution evaporation (APSE)” wasdeveloped for growing of Zinc Oxide (ZnO) nanostructures on Al2O3 surface. Zinc acetate dihydrate,Polyvinyl Pyrrolidone, and deionized water were used as precursor, capping, and solvent, respectively.The growth of ZnO nanostructures from evaporated solution was performed at three temperatures of300, 400, ...

متن کامل

Influence of Temperature, Time, pH, Capping Agent Concentration and Zn/Se Molar Ratio on Morphology and Phase Evolution of Zinc Selenide Nanoparticles Synthesized by Hydrothermal Method

The aim of the study was to investigate the effect of temperature, time, pH, capping agent concentration (mercaptoacetic acid), Zn to Se and Se to reducing agent (NaBH4) mole ratios on morphology, phase developments and size of zinc selenide nanoparticles prepared by hydrothermal method. Characterization of zinc selenide nanoparticles was performed by Field Emission Electron Microscopy (FESEM),...

متن کامل

Zinc oxide nano-crystals assisted for carbon dioxide gas sensing; prepared by solvothermal and sonochemical methods

ZnO nanostructures of different methods and sizes were grown in a controlled manner using a simple hydrothermal and sonochemical technique. Controlling the content of concentration and temperature of the reaction mixture, spherical nanoparticles ZnO structures could be synthesized at temperatures 100-150 °C with excellent reproducibility in solvothermal and at different power and time in sonoch...

متن کامل

Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process.

ZnO nanostructures of different morphologies were grown in a controlled manner using a simple low-temperature hydrothermal technique. Controlling the content of ethylenediamine (soft surfactant) and the pH of the reaction mixture, nanoparticles, nanorods, and flowerlike ZnO structures could be synthesized at temperatures 80-100 degrees C with excellent reproducibility. High-resolution electron ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012